

АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА

Муниципальное бюджетное общеобразовательное учреждение «Школа №185»

Принята на заседании методического (педагогического) совета Протокол № 1 от «22 » мая 2020 года

Дополнительная общеобразовательная общеразвивающая программа объединения «Город роботов»

Направленность: техническая

Возраст обучающихся: 8-13 лет Срок реализации: 1 год

Автор программы: Бабенко Е.С., учитель

Раздел 1. Комплекс основных характеристик образования

1.1. Пояснительная записка

Данная программа реализуется в рамках Проекта «Школа полного дня»

федерального проекта «Успех каждого ребенка» приоритетного национального проекта «Образование» в части создания новых мест дополнительного образования.

общеобразовательная Дополнительная общеразвивающая программа «Город роботов» имеет *техническую направленность*. Программа комплексная так как знакомит инженерной, информационной, технологической культурой, дает сведения об истории роботизации, вводит в курс робототехники, позволяет обучающимся развить организованность, самоконтроль, сформировать начальные знания и умения в технологиях конструирования и роботизированных устройств, программирования сформировать первоначальные навыки работы при построении различных моделей, конструкций технологических объектов при использовании цифрового оборудования. (компьютер, станки ЧПУ, 3 Опринтер)

Для обучающихся с ограниченными возможностями здоровья, детей-инвалидов образовательный процесс по программе реализуется с учетом особенностей психофизического развития указанных категорий обучающихся

Актуальность.

В связи с активным развитием информационных технологий, технологий прототипирования, робототехники и возрастающей ролью инженерно-технической графики, программирования в жизни общества, в образовательном процессе, представляется актуальным развитие у школьников технической пытливости, логичности мышления, расширение их информированности в инженернотехнологической культуре.

Направленность: техническая.

Уровень освоения – стартовый.

Новизна образовательной программы. Практикоориентированное содержание программы, занимательная игра и
соревнования способствуют первоначальному знакомству
обучающихся с различными современными технологиями построения
моделей, конструкций, технических объектов, роботизированных
устройств, влияют на развитие познавательной активной деятельности
обучающихся в техническом творчестве.

Педагогическая целесообразность заключается в том, чтобы сформировать первоначальную систему знаний у обучающихся в области информационных технологий, робототехники, высокотехнологичного оборудования; способствовать развитию познавательного интереса к получению знаний, умений по данным направлениям, возможности ранней профессиональной ориентации школьников.

Отличительные особенности программы:

- применение в образовательном процессе «комплекса» знаний инженерной, компьютерной графики, робототехники при эксплуатации высокотехнологичного оборудования;
- возможность ранней профессиональной осведомленности, ориентации;

-проведение мини – соревнований, викторин, конкурсов.

Объем программы 72 часа - в робототехнической лаборатории **Срок освоения программы** 1 год.

Наполняемость групп 12 человек. Количество определяется материально техническим обеспечением робототехнической лаборатории (для реализации программы на одно рабочее место – два обучающихся)

Возраст обучающихся 8-13 лет

Форма и режим занятий

Формы занятий:

- -практические занятия;
- -теоретические занятия;
- -самостоятельная работа, творческие конкурсы;
- -мини соревнования.

Формы организации деятельности: индивидуальные, групповые, соревнования

Методы обучения:

- -вербальные;
- -наглядные;
- -практические;
- -аналитические.

1.2. Цель и задачи программы

Цель программы: обогащение школьников знаниями о традиционных и современных инженерно-технологических процессах, компьютеризированных, роботизированных системах

Задачи программы:

Обучающие:

- –получение знаний о современных компьютеризированных системах, технологических процессах нового поколения;
- –получение знаний о техническом черчении, правилах работы в системах трехмерного моделирования и простейшего прототипирования;
- –получение первых умений объёмного, пространственного, конструкторского мышления;
- –получение первых навыков практических действий при построении, управлении технических моделей;

- -получение знаний основ программирования в среде LEGO MINDSTORMS EV3, виды математических и логических операций, ветвления и циклы;
- -приобретение знаний, умений безопасного, правильного использования любого технологического оборудования;
 - -популяризация достижений отечественной и мировой науки;
- –приобретение первого опыта участия в творческих конкурсах соревнованиях.

Развивающие:

- -раскрытие потенциала обучающихся в процессе изучения и начальной работы с различными технологиями таких как: любознательность, активность, самостоятельность;
- –профессиональная осведомленность школьников в различных сферах техники и технологий;
- -развитие у обучающихся интереса к изучению основ инженерно-технической деятельности, технического творчества.
 - -Воспитательные:
 - -содействие профессиональной ориентации;
 - -привитие чувства ответственности;
- -содействие ориентированию обучающихся в инновационных технологиях настоящего и будущего;
- формирование отношения сотрудничества в детском коллективе и во взаимодействии со взрослыми: научиться уважать чужое мнение, слушать и говорить, работать в группе.

1.3. Содержание программы.

Учебный план

No	Содержание	Количество часов			Формааттестации/
п/п		Всего	Теори	Практика	контроля
			Я		

	Первые шаги в робототехнику				
1.	Введение в робототехнику	18	9	8	Тестирование.
					Соревнование
2.	Введение в программирование	32	12	20	Тестирование.
	на EV3.				Соревнование
3.	Работа с датчиками	22	9	13	Тестирование.
					Соревнование
	Итого	72	30	42	
	Всего	72	30	42	

Учебно-тематический план Первые шаги в робототехнике

№	Наименование тем (модулей)	Всег	В том числе:		Форма
		о часо в	теор ия	практик а	аттестации/ контроля
1. Вве	едение в робототехнику	18	9	9	
	Знакомство с основами робототехники и Lego-роботами.	2	2	-	беседа
	Изучение основных деталей конструктора	2	2	-	опрос
	Механические передачи. Передаточные отношения. Редукторы.	4	2	2	практическое задание
	Знакомство с электроникой LegoMindstorms.	1	1	-	беседа
	Одномоторные тележки.	1	-	1	практическое
	Двухмоторная тележка. Полный привод.	2	1	1	задание
	Программирование робота с использованием встроенного ПО	2	1	1	беседа
	Обобщение знаний. Состязание «Сумо».	4	-	4	тестирование и соревнование
2. BB EV3.	едение в программирование на	32	12	20	
	Знакомство со средой программирования EV3.	2	2	-	беседа
	Работа с экраном и звуком.	4	1	3	

Изучение блоков управления моторами. Траектории	6	2	4	практическое задание
движения.				
		1		
Изучение базовых конструкций:	8	4	4	
циклы, ветвления, задержки.				практическое
Шины данных.				задание
Математические операции в	6	3	3	заданне
EV3. Применение				
математических операций.				
Обобщение знаний. Состязание	6	-	6	тестирование и
«Кегельринг»				соревнование
3. Работа с датчиками	22	9	13	
Работа с датчиками. Датчик	2	1	1	практическое
нажатия.				задание
Работа с датчиками. Датчик	4	2	2	
расстояния.				
Работа с датчиками. Датчик	6	2	4	
цвета.				
Лабораторная работа	4	2	2	самостоятельные
«Расположение датчика цвета».				выводы
Логические выражения в EV3.	2	2	-	беседа
Обобщение знаний. Состязание	4	-	4	тестирование и
«Кегельринг-квадро».				соревнование
Итого:	72	30	42	•

Содержание учебного плана

Первые шаги в программирование

Введение в робототехнику.

Теория:

Что такое робототехника. Знакомство с конструктором LEGOMindstorms, изучение его деталей. Изучение видов механических передач. Вычисление передаточных отношений. Знакомство с элементарными конструкциями, Подготовка конструктора к работе.

Практическая работа: Игра «Построй высокую башню», Создание механических передач с определенными передаточными отношениями. Игра «Фантастическое животное». Подготовка к соревнованиям.

Школьники будут знать и понимать:

Что такое робот, робототехника. Понимать функционал каждой детали конструкторов LEGO®Mindstorms. Виды механических передач, способы их применения при создании конструкций Расчет передаточных отношений. Самостоятельная сборка элементарных конструкций, в том числе за короткое время и для решения экспериментальных задач. Встроенное программное обеспечение LEGO®Mindstorms EV3 для управления роботом, правилами его использования, тестирования на примере собственной модели. Создание базовых роботов - опыт сборки конструкций.

Обобщение знаний - состязание «Сумо».

Введение в программирование на EV3.

Теория. Основа программирования моделей, собранных из конструктора LEGO®Mindstorms в среде программного обеспечения LEGO®Mindstorms EV3 *Практическая работа:* Написание простейших программ в среде LEGO®Mindstorms EV3.

Школьники будут знать и понимать:

Вывод информации на экран и воспроизведение звуков через динамики как решение различных задач. Управление сервоприводами (управление передвижениями конструкции). Базовые конструкции программирования. Работа с экраном, моторами и датчиками - алгоритмизация.

Обобщение знаний – состязание «Кегельринг»

Работа с датчиками.

Теория. Основные датчики LEGO[®]Mindstorms. Применение датчиков для решения различных задач, в которых необходимо взаимодействие со внешней средой.

Практическая работа: Измерение показаний датчика расстояния. Измерение показаний датчика нажатия. Измерение показаний датчика цвета

Школьники будут знать и понимать:

Использование датчиков расстояния, нажатия, цвета для решения различных задач. Обобщение знаний - состязание «Кегельринг - квадро».

1.4. Планируемые результаты

дополнительной общеобразовательной результате обучения ПО общеразвивающей программе «Лаборатории технического моделирования и робототехники» обучающиеся сформируются: первичные умения знания конструирования, начальные программирования, познавательный интерес к дальнейшему техническому творчеству, к знаниям робототехнических устройств, робототехнической культуры, а также первичный опыт культуры соревнований.

Программа в целом ориентирована на первичное освоение обучающимися универсальных и специальных компетенций в инженернотехнической профессии

Универсальные компетенции (общее развитие):

- организовывать собственную деятельность, исходя из цели ее достижения;
- нести ответственность за результаты своей работы;
- работать в команде, уметь сотрудничать;
- действовать активно, самостоятельно.

Специальные компетенции:

- определять соответствие собственных действий требованиям технического задания;
- первые умения объемного, пространственного, конструкторского мышления;
- первые навыки практических действий при построении, программировании, управлении технических моделей;
- поиск возможных неисправностей конструкций, алгоритмизации и программирования.

Обучающиеся также приобретают первый опыт участия в творческих конкурсах — соревнованиях (состязаниях), как первое ознакомление — раннюю профессиональную ориентацию в современных компьютеризированных системах, технологических процессах нового

поколения работы в системах трехмерного моделирования и простейшего прототипирования.

2. Комплекс организационно-педагогических условий

2.1. Формы аттестации и оценочные материалы

Способы определения результативности:

- 1. педагогическое наблюдение;
- 2. результаты промежуточного тестирования на предмет усвоения материала;
- 3. участие обучающихся в соревнованиях, регулировочных испытаниях, в тестировании технических объектов;
 - 4. решение самостоятельно технических задач;
 - 5. активность, самостоятельность обучающихся на занятиях.

Формы аттестации: регулировочные испытания – тестирование, соревнования,

Опеночный лист

Дополнительная общеобразовательная общеразвивающая программа освоена: Если обучающиеся научились:

- организовывать самостоятельно собственную деятельность в соблюдении все правил и норм техники безопасности;
- нести ответственность за результаты своей работы;
- работать в команде, уметь сотрудничать, уважать чужое мнение.

Если обучающиеся выполнили модели и приняли участие:

- в состязаниях Сумо», «Кегельринг», «Кегельринг-квадро».

2.2. Условия реализации программы

Материально-техническое обеспечение

Материально-техническое обеспечение

Оборудование робототехнической лаборатории:

- 1 Базовый робототехнический набор 2 шт.
- 2 Беспроводной пульт управления 2 шт.
- 3 Модуль для беспроводного управления и программирования 2 шт.
- 4 Набор расширений тип 1 2 шт.
- 5 Набор расширений тип 2 2 шт.

Данное оборудование поступило в рамках реализации Проекта «Школа полного дня»

федерального проекта «Успех каждого ребенка» национального проекта «Образование» в части создания новых мест дополнительного образования.